

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

MySQL 5.5: Storage Engine Performance
Benchmark for MyISAM and InnoDB

A MySQL® Technical White Paper

 January 2011

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

 Page 2

Table of Contents

Introduction ... 3 
InnoDB 1.1 Performance and Scalability Enhancements 3 
Benchmark Overview ... 6 

Sysbench.. 6 
Benchmark Platform... 7 

InnoDB and MyISAM Benchmark Results .. 7 
Sysbench Results... 7 

Comparing InnoDB & MyISAM... 9 
Considerations when Migrating from MyISAM to InnoDB 11 

Oracle Linux .. 13 
Conclusion .. 13 
Resources.. 13 
Appendix A: Sysbench Benchmark .. 14 

Configuration Parameters .. 14 
Appendix B: Comparing InnoDB 1.0 and 1.1 Performance..................... 15 

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

 Page 3

Introduction
With the release of MySQL 5.5, InnoDB has become the default storage engine. MyISAM, NDB
(MySQL Cluster), Memory, Archive, etc. are included as pluggable storage engines, giving users
the flexibility to choose the storage engine that best fits their specific use-case.

InnoDB is the mostly widely used storage engine for Web/Web 2.0, eCommerce, Financial
Systems, Telecommunications, Health Care and Retail applications built on MySQL. InnoDB
provides highly efficient ACID-compliant transactional capabilities and includes unique
architectural elements that deliver high performance and scalability. InnoDB is structurally
designed to handle transactional applications that require crash recovery, referential integrity,
high levels of user concurrency and fast response times.

While MyISAM and the other storage engines continue to be readily available, users can now
create applications built on InnoDB without altering default configuration settings. All of the
capabilities of InnoDB are now delivered “out of the box” with any MySQL 5.5 deployment.

The ACID properties of InnoDB are configurable, and so users can ensure ACID-compliance for
those workloads demanding the highest levels of data integrity, such as ecommerce, while
relaxing ACID properties where throughput is more important. Even with these relaxed
properties, benefits such as crash recovery are still maintained by InnoDB, so users enjoy much
higher levels of protection than they do with MyISAM.

The purpose of this whitepaper is to directly compare performance of the latest InnoDB 1.1
release included with MySQL 5.5 and MyISAM, using a benchmark that is commonly run to
measure MySQL throughput.

Performance is measured for both InnoDB and MyISAM across multi-core commodity systems to
provide direct comparisons in both throughput and scalability for Read / Write and Read-Only
workloads. Full ACID compliance was relaxed for the InnoDB tests to provide a more comparable
analysis with MyISAM. Full details are included in the “Benchmark Results” section.

The paper also discusses the most common use cases for both InnoDB and MyISAM, enabling
readers to assess the best storage engine for their specific application requirements.

InnoDB 1.1 Performance and Scalability Enhancements
MySQL 5.5 introduces a re-architected InnoDB 1.1 release that includes many performance and
scalability features over and above previous versions. InnoDB extends MySQL 5.5 performance
and scalability by adding the following new features:

Improved Default Thread Concurrency – InnoDB now defaults to allow an unlimited number of
concurrently executing threads, leveraging the processing power of multi-threaded and multi-core
systems. Users can override this default behavior by setting the value of
innodb_thread_concurrency to the limit that best works for specific applications.

Control of Background I/O Threads – Users now have two new configuration parameters for all
platforms, innodb_read_io_threads and innodb_write_io_threads that allow for the
setting of the number of background threads used for read and write requests. This helps users
tune and scale their MySQL applications on high-end, multi-core systems

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

 Page 4

Control of Master Thread I/O Rate – Users can now configure the overall I/O capacity and
bandwidth available to InnoDB for running background tasks, via the new
innodb_io_capacity in the my.cnf or my.ini files.

Control of Using Operating System Memory Allocators – Users can now control whether
InnoDB uses it own memory allocator or leverages the more efficient allocators available in the
current versions of the most commonly deployed operating systems. This is easily controlled by
setting the value of the new system configuration parameter innodb_use_sys_malloc in the
MySQL 5.5 option file (my.cnf or my.ini). The default setting is 1, which instructs InnoDB to
use the operating system resource.

Control of Adaptive Hash Indexing – Users can now disable the Adaptive Hash Indexing
feature, which is enabled by default in the built-in InnoDB. This is useful when tuning applications
or systems; too many threads blocked by RW-latch contention caused by the underlying Adaptive
Hash Indexing process (as shown in the output from SHOW ENGINE INNODB STATUS) is a good
indicator this feature can be disabled to improve performance.

Improved Performance and Scalability on Windows - MySQL has traditionally performed well
on UNIX based platforms but not so much on Windows. With more developers now building and
deploying applications on Windows, MySQL’s footprint has expanded on Windows from the
development desktop to the production datacenter. MySQL 5.5 includes Windows specific
improvements that ramp up performance and scalability for systems and applications designed to
service high concurrency and user loads. The key MySQL 5.5 improvements for Windows
include:
- MySQL now uses native Windows synchronization primitives to implement mutexes and

locking algorithms.
- MySQL now uses native Windows atomic operations vs. POSIX threads to implement

and free read/write specific locks.
- MySQL now uses native Windows operating system memory allocators by default.
- MySQL on Windows I/O thread handles maximum now equals the maximum on other

platforms so applications with many tables and connections get greatly reduced table
opening and closing overhead.

- Legacy optimizations made on other platforms have now been ported to MySQL on
Windows.

Improved Scalability via Faster Locking Algorithm – For most platforms (UNIX, Linux,
Windows), InnoDB uses native atomic operations vs. POSIX threads to implement mutexes and
read/write locks. These atomic operations have been optimized for the latest generation of multi-
core processor designs, serving to boost InnoDB performance and scale.

Restored Group Commit – An optimization that allows InnoDB to perform low-level I/O
operations (log write) once for a set of commit operations, rather than flushing and syncing
separately for each commit, which can significantly improve throughput.

Improved Recovery Performance - InnoDB is known for its ability to reliably recover data after a
crash. The time taken could be high if many pages had been modified but not flushed, so
sometimes it was desirable to limit the log file size to force flushes even though this causes
reduced performance. MySQL 5.5 includes a number of default optimizations designed to greatly
speed up the scanning and applying of redo logs so the next restart is faster. You can now set the
log files to their maximum possible sizes to increase the amount of write combining that can be
done.

Multiple Buffer Pool Instances - Today's buffer pools are consistently sized in the multi-gigabyte
range, data pages are persisted and are constantly being read and updated by different database
threads. MySQL 5.5 removes the bottleneck of waiting threads when one thread is updating the

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

 Page 5

buffer pool. All the structures normally associated with the buffer pool can now be multiplied, such
as its protecting mutex, the last recently used (LRU) information, and the flush list. Users can now
control and tune how many buffer pool instances are used; however, for backward compatibility
the default is still 1. This feature works best with combined buffer pool sizes of several gigabytes,
where each buffer pool instance can be a gigabyte or more.

Multiple Rollback Segments - InnoDB can now use multiple rollback segments improving
performance and scalability and greatly increasing the number of concurrent transactions that can
be serviced. While previous InnoDB versions had a limit of 1,023 concurrent transactions that had
modified data, MySQL 5.5 now allows for up to 128k that create undo data. This improvement
reduces the contention on the single rollback segment mutex resulting in higher throughput.

Native Asynchronous I/O for Linux - MySQL 5.5 enables improved concurrency of I/O requests
on Linux systems. Previous versions of InnoDB have provided “simulated asynchronous I/O” for
Linux by internally arranging I/O calls as if they were asynchronous, while behind the scenes the
query thread would block competing threads until the I/O request was complete. MySQL 5.5 now
provides true native asynchronous I/O support for Linux and Windows based systems. This
feature requires the libaio userspace library to be installed on Linux and comes with a
configuration option innodb_use_native_aio that can turned off if the new default setting is
not compatible with the host I/O subsystem.

Extended Change Buffering: Now with Delete and Purge Buffering - Like all databases,
InnoDB uses indexed columns to make query and primary key lookups more efficient and
performant. Secondary indexes, or those on columns other than the primary key, require disk
writes to keep them up to date when primary key columns are inserted, deleted, or updated.
Previous versions of InnoDB include an optimization that delays disk writes for secondary index
maintenance when the changes are due to INSERT operations. Meaning that InnoDB would
delay or buffer the changes to secondary indexes until the index contents are read into the buffer
pool during normal operations, such as a requesting query. The changes can then be made
quickly in memory and then flushed back to disk using the normal schedule for writing dirty
blocks. When the changes in the buffer pool affect a group of sequential disk blocks, they can be
flushed more efficiently than if the data were written piece by piece at the time of the change.
MySQL 5.5 extends this same functionality to include writes caused by deletes (an initial delete
marking operation, followed later by a purge operation that collects/purges all the deleted
records). The new Delete buffering and legacy Insert buffering features are now controlled using
the new innodb_change_buffering configuration option, which has a default of all.

Improved Log Sys Mutex and Separate Flush List Mutex - Operations involving the buffer pool
and the flush list previously were protected by a single buffer pool mutex, which could cause
contention and unnecessary delays. In MySQL 5.5 the flush list has its own mutex, reducing
contention with other buffer pool operations. Previously also the log mutex was held at this critical
point. A new log mutex has now been introduced that is held during this operation that decreases
the use of the central log mutex. This is the new default behavior, requiring no additional
configurations to be set. With the multiple buffer pool improvement each buffer pool instance has
a separate flush list mutex reducing contention even further.

Improved Purge Scheduling - The InnoDB purge operation is a type of garbage collection that
runs periodically. In previous versions, the purge was part of the master thread, meaning that it
could block other database operations when running. In MySQL 5.5 this operation can run in its
own thread, allowing for more concurrency. Users can control whether the purge operation is split
into its own thread with the innodb_purge_threads configuration option, which can be set to 0
(the default) or 1 (for a single separate purge thread).

Improved Metadata Locking Within Transactions - In previous MySQL versions when a
transaction acquired a metadata lock for a table used within a statement, it released the lock at

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

 Page 6

the end of the statement. This approach had the disadvantage that if a data definition language
(“DDL”) statement occurred for a table that was being used by another session in an active
transaction, statements could be written to the binary log in the wrong order. MySQL 5.5 ensures
transaction serialization by not permitting one session to perform a DDL statement on a table that
is used in an incomplete transaction in another session. This is achieved by acquiring metadata
locks on tables used within a transaction and deferring release of those locks until the transaction
ends. This metadata locking approach has the implication that a table that is being used by a
transaction within one session cannot be used in DDL statements by other sessions until the
transaction ends. For example, if a table t1 is in use by a transaction, another session that
attempts to execute DROP TABLE t1 will block until the transaction ends.

These changes, along with optimizations made to how MySQL internally manages table locking
(LOCK_open) improve performance for OLTP applications, specifically those that require frequent
DDL activity. The improvements of LOCK_open also remove a number of potential stalls of the
MySQL Server while performing DROP TABLE and other metadata operations.

See the Appendix section of the report for a performance comparison of InnoDB with MySQL 5.5
to the previous InnoDB plug-in provided for MySQL 5.1

You can read more about the new MySQL 5.5 and InnoDB performance and scalability
enhancements, including how to enable and implement them, here:
http://dev.mysql.com/doc/refman/5.5/en/mysql-nutshell.html
http://dev.mysql.com/doc/innodb-plugin/1.1/en/index.html

Benchmark Overview
The open source Sysbench benchmark was used to compare the performance of MySQL 5.5 with
the InnoDB 1.1 and MyISAM storage engines.

It is important to emphasize that performance is highly application-dependent. Users who are
considering migrating existing applications from the MyISAM storage engine to InnoDB should
benchmark their applications to identify any dependencies on MyISAM, and opportunities to tune
the InnoDB configuration parameters to better meet performance expectations. See the
“Comparing InnoDB & MyISAM” section later in the paper for more detail.

Sysbench
SysBench is a modular, cross-platform and multi-threaded benchmark tool for measuring OLTP
(On-Line Transaction Processing) database performance under intensive load. It is especially
useful for identifying those Operating Systems parameters needed to deliver the highest levels of
performance, including:

• file I/O performance
• scheduler performance
• memory allocation and transfer speed
• POSIX threads implementation performance

Sysbench has been used in two variants:

• Sysbench RW (Read Write) test
• Sysbench RO (Read Only) test.

Both tests use a set of 10 primary key lookups together with a few variants of queries performing
index scans. Sysbench RW also adds 3 update queries, 1 delete query and 1 insert query. All
operations are performed on one table.

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

 Page 7

This benchmark is synthetic but it does a very good job in revealing any scalability bottlenecks by
issuing more than 200.000 queries per second across a database with 1 million rows.

Users can download a copy of Sysbench for their own use from the following site:
http://sourceforge.net/projects/sysbench/

Benchmark Platform
Database Version:
MySQL 5.5.7-rc

Operating System:
Oracle Linux 5 with the Unbreakable Enterprise Kernel 2.6.32

Server Platform:
- 4 Sockets, 48 cores total, 4 x 12-core AMD Opteron 6172 “Magny-Cours” 2.1GHz CPUs.
(Note: 36 cores were allocated to MySQL and the remaining 12 the Sysbench processes).
- 64 GB DDR3 RAM
- 2 x Intel X25E SSD drives

InnoDB and MyISAM Benchmark Results
The following section of the whitepaper provides an analysis of the benchmark results generated
by MySQL 5.5 when configured with both the InnoDB and MyISAM storage engines.

Note that the ACID properties of InnoDB were relaxed when running the performance
comparisons. The log buffer is configured to write out updates to the log file at each commit, but
only flushes to disk at set time intervals. The following statement is used to configure this
behavior.

innodb-flush-log-at-trx-commit=2

Using the value above, the log file is flushed once per second, essentially batching writes to disk,
rather than committing transactions individually. The result is higher throughput, especially for
update-intensive and I/O bound workloads.

When using a value of “2”, as above, only an operating system crash or a power outage can
erase the last second of transactions. However, InnoDB's crash recovery is not affected and
continues to work regardless of the value.

With a value of “0” used in the statement above, a mysqld process crash can erase the last
second of transactions, though again InnoDB’s crash recovery is unaffected.

The default value of “1” is required in the statement above for full ACID-compliance.

You can learn more about InnoDB start-up options and configuration variables here:
http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html 

Sysbench Results
Both Read / Write and Read-Only Sysbench tests were run to compare the performance and
scalability of InnoDB and MyISAM, with Transactions Per Second (TPS) recorded for each

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

 Page 8

storage engine as more cores were enabled in the host server. Initial runs were made with 6-
cores, and then repeated as the server was scaled with 12, 18, 24, 30 and then 36-cores. In all
cases, the number of concurrent database connections was set at 64.

As the data below demonstrates, InnoDB delivers very good scalability up to 30-cores. From 30 to
36-cores, performance continues to increase, though scalability is reduced.

MyISAM demonstrates almost zero scalability from 6 to 36 cores, with performance significantly
lower than InnoDB.

Read-Write Results
As the graph below shows, InnoDB delivered 35x higher throughput than MyISAM, while
achieving 85% - 90% scalability from 6 to 36-cores. Above 30-cores, the scalability curve starts
to flatten out as the number of hot mutexes grow, but performance does still continue to increase.

Clearly table locking in MyISAM reduces throughput for Read / Write workloads.

Figure 1: InnoDB Delivers 35x Higher Performance than MyISAM with up to 90% Scalability

Read-Only Results
InnoDB delivered 4.6x higher throughput than MyISAM, while achieving 90% - 95% scalability
from 6 to 36-cores. Above 30-cores, scalability flattens out as the server is again saturated by a
number of hot mutexes.

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

 Page 9

Figure 2: InnoDB Delivers 4.6x Higher Performance than MyISAM with up to 95%
Scalability

Comparing InnoDB & MyISAM
A major advantage of MySQL is its flexible pluggable storage engine architecture. Both InnoDB
and MyISAM are examples of pluggable storage engines that can be selected for each individual
table managed by the database. The use of the storage engine is transparent to both the
application and the user.

Each storage engine has its own specific characteristics and benefits. Beyond performance on
OLTP workloads, there are many other factors that influence selection of the storage engine. The
table below highlights the key feature differences between InnoDB and MyISAM.

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

 Page 10

[a] Compressed MyISAM tables are supported only when using the compressed row format.
[b] Compressed InnoDB tables require the InnoDB Barracuda file format.
[c] Implemented in the server (via encryption functions), rather than in the storage engine.
[d] Implemented in the server, rather than in the storage engine.

Figure 3: InnoDB to MyISAM Feature Comparison

As both the table above and the benchmark results demonstrate, InnoDB delivers the best blend of
performance, reliability and data integrity for transactional workloads, with a host of parameters that
are configurable, enabling users to optimize performance and behavior for their specific workload.1

MyISAM remains a strategic technology for MySQL and its users, and there are some use cases
that are better suited to the characteristics of MyISAM. Full-text search indexes in MyISAM are
useful for many simple read-only web applications, though often users deploy MySQL and InnoDB
with Sphinx or Lucene for fast text searches as an alternative to MyISAM. It is often the case that
performing full text searches outside of the database will deliver higher levels of performance and
scalability.

Other use cases that are potentially suitable for MyISAM include:

• Applications demanding very high raw INSERT speeds where concurrency is not a
consideration. Performance will always be application dependent, so benchmarking is
necessary to determine the best solution for your own environment.

• Caches or temporary tables.
• Blogs / Wikis / RSS feeds.
• Read-only tables.

1 Configuration parameters: http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

 Page 11

It is also very easy to create read-only slaves without using MySQL replication by sharing MyISAM
tables via NFS. This is not possible with InnoDB.

Considerations when Migrating from MyISAM to InnoDB
In many cases, migration can be accomplished by simply running ALTER TABLE as InnoDB is a drop-in
replacement for MyISAM, but it is still important to be aware of the considerations discussed below. These
are not exhaustive, but are the most common factors found among MySQL users who have migrated their
tables.

Migration Process
The first consideration is the migration process itself. As mentioned above, ALTER TABLE is simple, but it
will lock the table during operation. One common practice for high volume production environments is to use
MySQL Replication. In this instance, changes are made to tables on the slave server only, which can then be
tested before being promoted to become the new master. As a result, any disruption to the application and
clients is avoided. Another option is to dump the table and then reload it.

Tuning and Functional Considerations
As part of any migration, it is important to thoroughly test your applications to ensure functionality is
maintained and performance expectations are achieved. As discussed earlier, performance is always
application-dependent so it is highly recommended that users benchmark their own workloads, especially
when considering migrating an existing application from MyISAM to InnoDB.

Tuning the Key Buffer is one of the very few performance optimizations available for MyISAM. InnoDB is
much more configurable, which can initially present more complexity, but is also much more flexible, allowing
InnoDB to effectively serve a much broader range of workloads than MyISAM.

Typically users will reduce the key buffer size when moving from MyISAM to InnoDB, and will pay special
attention to the innodb_buffer_pool_size parameter2. Unlike MyISAM, InnoDB stores both indexes and pages
in memory, which provides lots of scope for performance optimization.

From a functional perspective, your application may have dependencies on the table locks that are
implemented by MyISAM and need to be identified and addressed before migration can be completed. Also,
due to transactional support, InnoDB also has its own locking characteristics that should be tested for
compatibility as some applications may expect table locks for certain update or delete operations.

A common operation in MyISAM that can result in performance issues when migrating to InnoDB is using the
COUNT(*) operation without a WHERE clause. The code should be modified to include a WHERE clause as
this will avoid a full table scan.

Other functions to consider include automatically incrementing the primary keys of multiple columns and
merging tables, neither of which are supported by InnoDB.

The way in which tables are updated can also be impacted when you move from MyISAM to InnoDB. To
minimize the impact of table locks, many MyISAM users divide updates into smaller operations. When
moving to InnoDB, it is worth considering the batching of updates so that the affects of transactional commits
are divided across multiple operations, thereby reducing overhead for each individual transaction.

File Sizes and Storage Requirements
File sizes under the InnoDB storage engine have often been larger than those generated for MyISAM,
however as InnoDB can compress both data and indexes while MyISAM compresses only the indexes, this
has become much less of a restraint.

2 http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_buffer_pool_size

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

 Page 12

InnoDB tables can consume more space than MyISAM as indexes contain the primary key, which is then
copied to secondary indexes. To save space and increase performance, some users convert multi-column
primary keys to auto-increment fields.

The transactional capability of InnoDB also increases the storage requirement as it needs to maintain undo
spaces, row versions and transactional details.

On-disk fragmentation of files can also be an issue with both storage engines, but can be addressed by
running the OPIMIZE TABLE command. Typically this command needs to be run less frequently with InnoDB
than MyISAM.

Hardware Considerations
With the considerations above, it is important to ensure your hardware platforms are equipped with sufficient
RAM and disk capacity to accommodate potentially larger file sizes. To leverage the durability and crash
recovery of InnoDB, it is also important to ensure that your server platforms are equipped with the appropriate
reliability mechanisms, including battery-backed caches on their RAID cards, and to use a journaling file
system.

Operational Processes
Some operations tasks such as backing-up tables are different between MyISAM and InnoDB. A common
utility is mysqldump, but MyISAM requires table locks whereas InnoDB does not, so the user needs to ensure
they run mysqldump configured with the appropriate options3. Non-blocking, hot back-ups can be performed
with LVM or SAN snapshots, which are also much faster than mysqldump.

MySQL Enterprise Back-Up, part of the commercial MySQL Enterprise Edition, can be used to backup both
InnoDB and MyISAM tables. Hot back-up, non-blocking operations are supported for InnoDB tables by
MySQL Enterprise Back-up. You can learn more at:
http://www.mysql.com/products/enterprise/backup.html

A further consideration is that MyISAM can complete LOAD FROM FILE operations faster than InnoDB. In
such cases, it can make sense to create tables under the MyISAM engine first, and then alter the table to
InnoDB once loaded.

Additional Resources
You can learn more about MyISAM table restrictions from the documentation here:
http://dev.mysql.com/doc/refman/5.5/en/myisam-table-problems.html

It is also worth reviewing InnoDB table limits documented here:
http://dev.mysql.com/doc/refman/5.5/en/innodb-restrictions.html

Best practices for configuring InnoDB are documented here:
http://dev.mysql.com/doc/refman/5.5/en/innodb-configuration.html

The MySQL Consulting division at Oracle can provide assistance in migration and performance projects,
ensuring costs and risks are reduced and allowing you to quickly take advantages of the benefits of InnoDB.

3 http://dev.mysql.com/doc/refman/5.1/en/mysqldump.html

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

 Page 13

Oracle Linux
Oracle Linux with the Unbreakable Enterprise Kernel was used as the operating system for the Sysbench
benchmark used in these tests.

Oracle Linux4 is an enterprise-class Linux distribution supported by Oracle. Available under the GPL license,
Oracle Linux is fully source and binary compatible with Red Hat Enterprise Linux.
 
Oracle Linux is certified for compliance with the Linux Standard Base (LSB), which increases the compatibility
between individual Linux distributions, reducing the costs and effort involved with porting and then supporting
applications across different distributions.

The Oracle Unbreakable Enterprise Kernel5 is based on the stable 2.6.32 Linux kernel, delivering a fast,
modern, reliable platform that is optimized for Oracle software and hardware. Oracle Linux combined with the
Unbreakable Enterprise Kernel brings the latest Linux innovations to market delivering extreme performance,
advanced scalability and reliability for enterprise applications.

The Oracle Unbreakable Linux support program6 delivers enterprise-class support for Oracle Linux and the
Oracle Unbreakable Enterprise Kernel with backports, management packs, indemnification, testing and more.

Conclusion
InnoDB is now the default storage engine for the MySQL database, replacing MyISAM. As a result,
MySQL handles transactional applications that require crash recovery, referential integrity, high
levels of performance and scalability with fast response times, straight out of the box.

MyISAM remains an important storage engine for specific read-intensive workloads. But as these
benchmark results demonstrate, users can configure InnoDB to relax specific ACID constraints,
while gaining much higher levels of protection and functionality, all with higher performance and
scalability than MyISAM.

For new applications built around MySQL 5.5, it is recommended to use the default InnoDB storage
engine. For existing applications, evaluate migrating to InnoDB to gain the benefits of additional
database features, performance and scalability.

Resources
Whitepaper: An Introduction to MySQL 5.5:
http://www.mysql.com/why-mysql/white-papers/mysql-wp-whatsnew-mysql-55.php

Download MySQL 5.5:
http://dev.mysql.com/downloads/mysql/#downloads

MySQL 5.5 Documentation:
http://dev.mysql.com/doc/refman/5.5/en/

4 http://www.oracle.com/us/technologies/linux/025994.htm
5 http://www.oracle.com/us/technologies/linux/unbreakable-enterprise-kernel-ds-173416.pdf
6 http://www.oracle.com/us/technologies/027614.pdf

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

 Page 14

Appendix A: Sysbench Benchmark

Configuration Parameters

Server Start-Up String
MYSQLD="";if test -f /data0/bench/mysql/mysql-5.5.7-rc/bin/mysqld ;
then MYSQLD="taskset 0xFFFFFFFFF000 /data0/bench/mysql/mysql-5.5.7-rc-tp6/bin/mysqld";
MYSQLD_SUBDIR="/data0/bench/mysql/mysql-5.5.7-rc-tp6/bin";fi;if test -f
/data0/bench/mysql/mysql-5.5.7-rc-tp6/sbin/mysqld ; then MYSQLD="taskset 0xFFFFFFFFF000
/data0/bench/mysql/mysql-5.5.7-rc-tp6/sbin/mysqld";
MYSQLD_SUBDIR="/data0/bench/mysql/mysql-5.5.7-rc-tp6/sbin";fi;if test -f
/data0/bench/mysql/mysql-5.5.7-rc-tp6/libexec/mysqld ; then MYSQLD="taskset 0xFFFFFFFFF000
/data0/bench/mysql/mysql-5.5.7-rc-tp6/libexec/mysqld";
MYSQLD_SUBDIR="/data0/bench/mysql/mysql-5.5.7-rc-tp6/libexec";fi;if test "x${MYSQLD}" = "x" ;
then echo "No mysqld binary in path"; exit 1;fi; echo "Using binary from ${MYSQLD}"; LANG=""; if
test -d /data0/bench/mysql/mysql-5.5.7-rc-tp6/share/mysql ; then LANG="/data0/bench/mysql/mysql-
5.5.7-rc-tp6/share/mysql"; else LANG="/data0/bench/mysql/mysql-5.5.7-rc-tp6/share"; fi; LANG="--
lc-messages-dir=$LANG"; ulimit -c unlimited; export LD_LIBRARY_PATH=/usr/local/lib ;export
LD_PRELOAD=libjemalloc.so.1 ; $MYSQLD --no-defaults

InnoDB
--innodb_purge_threads=1
--innodb_file_format=barracuda
--innodb-buffer-pool-size=8192M
--innodb_support_xa=FALSE
--innodb_flush_method=O_DIRECT
--innodb-flush-log-at-trx-commit=2
--innodb-log-file-size=2000M
--innodb-log-buffer-size=64M
--innodb-io-capacity=200
--skip-innodb-adaptive-hash-index
--innodb-read-io-threads=8
--innodb-write-io-threads=8
--innodb_change_buffering=all
--innodb_stats_on_metadata=off
--innodb-buffer-pool-instances=12
--skip-grant-tables7
--max_tmp_tables=100
--query_cache_size=0
--query_cache_type=0
--max_connections=1000
--max_prepared_stmt_count=1048576
--sort_buffer_size=32768

7 Note, for security of production workloads, it is recommended to not skip GRANT tables. Performance is unaffected by
GRANT tables as these are only used when connecting to the database, and not when running queries.

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

 Page 15

Appendix B: Comparing InnoDB 1.0 and 1.1 Performance
Much of the engineering work that has gone into MySQL 5.5 and re-architecting InnoDB has been
focused on providing users with “transparent” performance and scalability gains across
heterogeneous platforms specifically on multi-CPU/core, hyper-threaded architectures. For quick
reference, below are Oracle’s internal SysBench benchmark tests comparing the performance of
MySQL 5.5 with version 5.1 the on Linux platform. These benchmarks include instances of 5.1
configured with the optional InnoDB 1.0 plug-in and with the default InnoDB built-in.

MySQL 5.5 SysBench Benchmarks on Linux

For context, the SysBench benchmarks for Linux were performed on the following server
configuration:

Intel Xeon x7460, x86_64
4 CPU x 6 Cores/CPU
2,86 GHz, 32 GB RAM
Fedora 10

Figure 4: SysBench Benchmarks for Linux – Read Only

Figure 4 shows a 200% performance and scalability gain for MySQL 5.5 over 5.1 for Read Only
activity on Linux at higher transaction and connection loads. New concurrency improvements allow
MySQL 5.5 to sustain improved performance levels at higher transactions per second and user
connection loads so applications remain responsive even when the physical server resources are
saturated.

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

 Page 16

Figure 5: SysBench Benchmarks for Linux – Read/Write

Figure 5 shows a 370% performance and scalability gain for MySQL 5.5 over 5.1 for Read/Write
activity on Linux at higher transaction and connection loads. Again, although there is some drop-off
at higher transaction and user loads, the new concurrency improvements allow MySQL 5.5 to
sustain higher performance levels than previous versions of 5.1 at physical server saturation.

